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Abstract

Objectives: Mathematical models of human neurobehavioral performance that include the 

effects of acute and chronic sleep restriction can be key tools in assessment and comparison 

of work schedules, allowing quantitative predictions of performance when empirical assessment is 

impractical.

Methods: Using such a model, we tested the hypothesis that resident physicians working an 

extended duration work roster (EDWR), including 24–28 hours of continuous duty and up to 88 

hours per week averaged over 4 weeks, would have worse predicted performance than resident 

physicians working a rapidly cycling work roster (RCWR) intervention designed to reduce the 

duration of extended shifts. The performance metric used was attentional failures (i.e., PVT 

lapses). Model input was 169 actual work and sleep schedules. Outcomes were predicted hours per 
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week during work hours spent at moderate (equivalent to 16–20 hours of continuous wakefulness) 

or high (equivalent to ≥20 hours of continuous wakefulness) performance impairment.

Results: The model predicted that resident physicians working EDWR would spend significantly 

more time at moderate impairment (p=0.02, effect size=0.2) than those working RCWR; this 

difference was most pronounced during the circadian night (p<0.001). On both schedules, 

performance was predicted to decline from weeks 1+2 to weeks 3+4 (p<0.001), but the rate 

of decline was significantly greater on EDWR (p<0.01). Predicted performance impairment was 

inversely related to prior sleep duration (p<0.001).

Conclusions: These findings demonstrate the utility of a mathematical model to evaluate the 

predicted performance profile of schedules for resident physicians and others who experience 

chronic sleep restriction and circadian misalignment.

Keywords

adenosine; chronic sleep loss; medical errors; work hours; circadian

Introduction

When individuals perform with during extended time awake (“sleep deprivation”), after 

multiple nights of insufficient sleep (“chronic sleep restriction”), and/or at an adverse 

circadian phase, their neurobehavioral performance is impaired1,2,3,4. In the context of 

occupational health, these impairments are associated with increased risk of errors, 

workplace injuries, and motor vehicle crashes during the commute home5–10. Work 

schedules that require long continuous duty hours and/or night shift work should therefore 

be designed with sleep and circadian factors in mind. Mathematical models are one tool to 

facilitate designing these schedules.

The US medical profession requires resident physicians to work extended duration work 

rosters (EDWRs) that pose challenges for human sleep and circadian biology. Currently 

standard schedules permit resident physicians to work 80 hours per week (averaged over 

4 weeks) including continuous work shifts of 24–28 hours (‘on-call’ shift). This work 

pattern results in sleep deprivation, chronic sleep restriction and work during adverse 

circadian phases (i.e., at times when the circadian system is promoting sleep)11. Not 

surprisingly, EDWRs have been shown to be associated with impairment in medical and 

neurobehavioral performance12–14. When similarly challenging schedules are simulated in 

laboratory environments, they induce severe neurobehavioral (both objective performance 

and mood) impairment and metabolic dysfunction15–19.

To mitigate the increased risk to both patient and physician safety6,20,21, schedules have 

been developed that reduce the number of continuous duty hours, weekly work hours, 

and/or the frequency of extended-duration work shifts22,23. One of these schedules was a 

Rapidly Cycling Work Roster (RCWR) with scheduled continuous duty hours limited to 16 

h (RCR-16) consisting of a short day shift (7:00–15:00), a long day shift (7:00–22:00), and a 

long night shift (21:00–13:00).
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The RCWR was tested against a traditional EDWR in a clinical trial design detailed 

below. Relative to a traditional EDWR, the RCWR intervention was found to significantly 

increase total sleep time and decrease incidence of serious medical errors when applied to 

post-graduate year 1 (PGY-1) resident physicians working in the ICU11,14.

As a complement to quantitative experimental approaches, mathematical models have 

been widely used for schedule assessment, design, and optimization24–27,28–35. Modeling 

of performance for individuals and teams26 is valuable for several reasons: (i) modeling 

allows completely unbiased comparisons of performance between schedules, eliminating 

any concerns around blinding or expectancy effects; (ii) modeling allows performance to 

be interrogated at all times, even when it would be logistically difficult to empirically 

assess (e.g., while participants are performing work tasks or driving); (iii) modeling allows 

quantitative predictions of performance across multiple possible schedules since empirical 

assessment of every possible schedule would be impractical; (iv) the model can provide 

insights into the basis for performance differences between schedules, illuminating a path 

to effective interventions; and (v) once a model has appraised existing schedules, it can 

be used in future to predictively assess potential alternative schedules in a safe, relatively 

inexpensive, and rapid fashion, allowing candidate schedules to be assessed prior to a 

randomized control trial.

To make accurate predictions on resident physician schedules, a model should ideally be 

able to predict changes in neurobehavioral performance due to a combination of: (i) the 

dynamics of the circadian pacemaker (circadian phase is potentially shifted by rotating 

schedules); (ii) the effects of acute sleep deprivation (since 24–28 h shifts are permitted 

by the Accreditation Council for Graduate Medical Education [ACGME]); and (iii) the 

effects of variable timing and chronic sleep restriction that causes accumulated sleep debt 

over longer timescales. To date, only one model has been applied to resident physician 

schedules26; the model included a dynamic circadian pacemaker and the effects of acute 

sleep deprivation on performance36, but did not account for effects of chronic sleep 

restriction. The model also was only applied to theoretical schedules. Here, we employ a 

validated model of the human circadian pacemaker33 combined with a sleep-homeostatic 

model that has previously been trained and tested using acute sleep deprivation and both 

stable and variable sleep timing within chronic sleep restriction protocols19,37. This model 

was used to simulate 169 actual EDWR and RCWR schedules to test the hypothesis that 

RCWR improves neurobehavioral performance compared to EDWR.

Methods

The model is briefly reviewed below, followed by a description of the schedules and their 

implementation in the model.

Mathematical model

We recently developed a model of human neurobehavioral performance with equations 

based on the structure of the sleep-promoting adenosine system in the brain37. The model 

includes both circadian and sleep homeostatic variations in performance, including both 

acute and chronic effects of sleep loss and recovery. Specifically, the model includes a drive,
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D = H + aC,

(1)

where H is the homeostatic sleep drive (based on the concentration of bound adenosine 

A1 receptors), a is a constant, and C is the circadian rhythm. The model was previously 

calibrated against Psychomotor Vigilance Task (PVT) data in healthy young adults under 

conditions of acute sleep deprivation, chronic sleep restriction, and recovery38. The PVT is a 

visual vigilance task that is sensitive to sleep deprivation, sleep restriction, and circadian 

phase16,38,39 and has been correlated with performance levels associated with alcohol 

intoxication40,41. The model generates an estimate of the number of PVT lapses (i.e., 

responses slower than 500 ms) that would occur during a standard 10-minute test, using a 

sigmoid function,

P = S D .

(2)

The model has to date been used to simulate schedules with night sleep opportunities 

only19,37. Thus, it was previously valid to assume entrainment (i.e., a relatively stable 

circadian phase), as has been done in other sleepiness and performance models27,42: C was 

modeled as a sinusoid (i.e., a constant amplitude, 24-hour rhythm). Since the model is 

used here to simulate schedules that involve both day and night sleep opportunities, and 

included light/dark patterns known to affect timing (“phase”) of the circadian pacemaker, it 

is important to incorporate into the performance model a dynamic model of the circadian 

pacemaker (i.e., a model that can accurately predict changes in phase or amplitude of 

the circadian rhythm in response to a light stimulus) rather than a static model (e.g., 

sinusoidal representation of the circadian pacemaker). For this, we followed an approach 

used previously in which a dynamic circadian pacemaker model is substituted in place of 

a sinusoidal rhythm43,44. Specifically, the sinusoid is replaced by the best-fitting output of 

the latest validated version of the Jewett-Kronauer-Forger model of the human circadian 

pacemaker33. This was achieved by setting

C = − 0.608x + 0.685xc + 0.075,

(3)

where x and xc are the two pacemaker outputs of the differential-equation-based dynamic 

circadian pacemaker model33. The coefficients were selected based on a least-squares fit to 

the previously used sinusoid.

The model used two inputs: each resident’s recorded sleep/wake patterns, and a modeled 

light input to the dynamic circadian pacemaker model (measured in lux, method detailed 

below). We used the model to generate predictions of number of attentional failures (i.e., 

PVT lapses) at each point in time as output.
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Schedules

The schedules used for modeling were created from daily logs of sleep and work (detailed 

below) of resident physicians from July 2013 to March 2017 as part of the Randomized 

Order Safety Trial Evaluating Resident Schedules (ROSTERS) study45. This was a multi-

center cluster-randomized, clinical trial designed to evaluate the effectiveness of replacing 

EDWRs with RCWRs in six pediatric intensive care units (PICUs). Each condition had 

a 4-month wash-in period followed by an 8-month data collection period, with the order 

of the schedule condition being randomly assigned45. All post-graduate year 2 (PGY-2) 

and 3 (PGY-3) resident physicians working in the PICU at each site over the study period 

were invited to participate. Full details of the study, including PVT results, are reported 

elsewhere45–47. The study was approved by the Institutional Review Board (IRB) at each 

academic medical center as well as at the University of California San Francisco (Data 

Coordinating Center, DCC) and by the Partners Human Research Committee (Clinical 

Coordinating Center, CCC), and is reported on ClinicalTrials.gov (NCT02134847).

A daily electronic log was used to collect data from participants on sleep timing (including 

sleep latency estimates) and duration, awakenings, and start and end times of work schedules 

(“rosters”). A paper version of the same sleep log was previously shown to have high epoch-

to-epoch agreement with continuous polysomnography (95.6% epoch-to-epoch agreement; 

r=0.94, p<0.001)11. Analyses of experimental sleep and work schedule data are presented in 

Barger et al.6 For inclusion in the model, we required at least 3 consecutive weeks of sleep/

wake and work data with no missing intervals. A total of 298 schedules had 3 consecutive 

weeks of sleep/wake and work data collection, of which 169 (57%) had no missing intervals 

and were suitable for modeling: 95 EDWRs and 74 RCWRs. On logs where individuals 

failed to report sleep latency (5.0% of nights), that same individual’s median reported sleep 

latency was imputed using median substitution. Schedule data included in the analysis 

ranged in length from 21.2 days to 33.3 days for EDWR and from 21.2 days to 33.8 days for 

RCWR.

Simulations

Sleep/wake schedules were implemented by forcing the model to be in sleep or wakefulness 

during the times recorded in the logs. Light levels were simulated using a previously 

published method for simulating how individuals self-select light patterns in the real 

world48. Specifically, an indoor light level of 50 lux was used for both work hours and hours 

of wakefulness before sunrise or after sunset49–51. A smooth light profile with a maximum 

of 300 lux was used for non-work hours (including potential commuting hours) between 

sunrise and sunset:

I = 150tanh c t − s1 − 150tanh c t − s2 ,

(4)

where t is clock time (time in hours, modulo 24, ranging from 0 to 24). The parameters 

s1 = 7.5 h, s2 = 16.5 h, and c = 0.6 h−1 were chosen to generate an approximately 12-hour 

photoperiod centered at noon. Light levels were set to zero lux during any times the 
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individual was asleep; therefore, light levels rise and fall abruptly at sleep offset and onset, 

respectively.

Prior to simulating the work schedules, the model was entrained to a permanent day-shift 

schedule for 6 months with two non-work days per week and sleep opportunities from 

22:30 to 5:30 on the five work days per week; this was to ensure entrainment of the 

circadian pacemaker and equilibration of the long timescale sleep homeostatic component to 

the schedule. This schedule was motivated by the pre-study conditions in Lockley et al.11 

and corresponds to the sleep times used in a previous simulation paper26. To obtain PVT 

thresholds corresponding to moderate impairment and high impairment, a simulation was 

performed in which the model was held awake from a wake time of 5:30 for 16 hours and 20 

hours, respectively, at the end of the baseline schedule; note that the end of these continuous 

wake durations is during the circadian “night” and therefore during circadian misalignment. 

The threshold for moderate impairment was defined as the number of PVT lapses predicted 

by the model at 16–20 hours of continuous wakefulness: 8.7–15.2 lapses. Similarly, the 

threshold for high impairment was defined as the number of PVT lapses predicted by the 

model at ≥20 hours of continuous wakefulness: >15.2 lapses.

Analysis

As primary outcomes for each schedule, we computed the average number of hours per 

week (i.e., per 168 hours) during working hours corresponding to: (i) moderate impairment; 

and (ii) high impairment. The EDWR and RCWR conditions were first compared for all 

weeks of data in all participant schedules. Because the impairment time distributions were 

highly skewed, a nonparametric comparison was used (Wilcoxon rank sum test).

To measure acute vs. chronic effects of each schedule, number of hours of moderate 

impairment and high impairment were computed for weeks 1+2 and for weeks 3+4 on 

each schedule, using all available data within the time range. A mixed-effects regression 

model was fit to the primary outcomes, including schedule and week block as fixed effects 

and participants as random effects. The week 1–2 block in the EDWR condition (i.e., first 

time point in the non-intervention condition) was used as the baseline for contrasts. An 

interaction between schedule and week block was included. Normality of residuals was 

checked with Q-Q plots. Mixed-effects models were implemented in MATLAB (R2015a, 

Mathworks, Natick MA, USA) using the function fitlme. Absolute effect sizes and their 95% 

confidence intervals were reported.

To examine temporal patterns in performance, the mean of predicted PVT lapses were 

computed for each schedule in 1-h clock-time bins across the schedule. Two methods 

of averaging were used for each schedule: (i) using all hours of wakefulness, and (ii) 

using all work hours. To compare between schedule conditions, these temporal patterns 

were averaged across schedules within each condition, and 1-h timepoint-wise comparisons 

between conditions were made using t-tests after running an ANOVA to confirm differences 

between conditions. Differences were considered significant if p<0.002 (with Bonferroni 

correction for multiple comparisons).

Phillips et al. Page 7

Sleep Health. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As a secondary analysis, we investigated whether performance differences within the EDWR 

or RCWR conditions could be explained by total average sleep time. For each individual 

schedule, we computed the average percentage of time spent asleep in 1-h clock-time bins 

from start to end of schedule, so that estimates would not be biased by clock timing of 

missing data. The average total sleep time for an individual schedule was computed by 

averaging across clock-time bins. Spearman correlations were computed between average 

total sleep time and hours per week in a predicted moderate or highly impaired state.

As a further secondary analysis, we investigated whether performance differences within the 

EDWR or RCWR conditions could be explained by the frequency of short between-shift 

intervals (defined as intervals <10 h in duration), since they could affect sleep timing and 

duration. Specifically, we computed the average number of short between-shift intervals per 

week (168 hours). Spearman correlations were computed between the frequency of short 

between-shift intervals and hours per week in a moderate or highly impaired state.

Results

Examples of predicted amount of time spent in a moderately or highly impaired state on 

EDWR and RCWR are shown in Figure 1. On the EDWR, there was a range of 5.0–47.1 

hours per week spent in a moderately impaired state (median=15.5 h), while there was a 

range of 1.4–32.2 hours per week (median 13.5 h) spent in a highly impaired state. On 

the RCWR, there was a range of 3.6–37.1 hours per week (median=10.8 h) spent in a 

moderately impaired state, while there was a range of 0–37.6 hours per week (median 

12.0 h) spent in a highly impaired state (Figure 2). At this schedule level, time spent in a 

moderately impaired state was significantly higher for EDWR compared to RCWR (p=0.02; 

effect size = 0.2). Time spent in a highly impaired state was not significantly different 

between schedules (p=0.11).

Mixed-effects modeling showed significant main effects of the week block and a significant 

interaction of condition with week block. For the main effect of week block, we found 

that compared to the week 1–2 block, time spent in a moderately impaired state per week 

was increased by 2.6 hours (p=0.001, 95% CI: 1.0–4.2 hours) and time spent in a highly 

impaired state was increased by 1.7 hours (p=0.001, 95% CI: 0.7–2.8 hours) in the week 3–4 

block. For the interaction of condition with week block, we found that compared to RCWR, 

time spent in a moderately impaired state for EDWR was further increased from weeks 

1–2 to weeks 3–4 by 3.4 hours (p=0.003, 95% CI: 1.2–5.7 hours), whereas time spent in a 

highly impaired state had no significant interaction (0.6 hours, p=0.46, 95% CI: −0.9–2.0 

hours). There was no main effect of condition, meaning time spent in a moderately or highly 

impaired state in the week 1–2 block did not significantly differ between conditions.

Differences in predicted performance with time of day were observed between the schedules 

(Figure 3). For the analysis of performance across all hours of wakefulness (Figure 

3A), there was a main effect of condition (p<0.0001) and time (p<0.0001). In pairwise 

comparisons, performance was significantly worse on the EDWR than the RCWR in all 

clock time bins from 21:00 to 04:00. Similarly, for the analysis of performance across 

working hours (Figure 3B), there was a main effect of condition (p<0.0001) and time 
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(p<0.0001). In pairwise comparisons, performance was significantly worse on the EDWR 

than the RCWR in all clock time bins from 19:00 to 05:00, whereas performance was 

significantly better on the EDWR than the RCWR in all clock time bins from 08:00 to 11:00.

Short between-shift intervals were significantly less common on the EDWR than the 

RCWR (0.3% vs.8.4%, p<0.0001)47. Within the EDWR condition, the frequency of short 

between-shift intervals was not significantly associated with predicted number of hours in 

a moderately impaired state (r=−0.15, p=0.07) or highly impaired state (r=−0.02, p=0.84). 

Within the RCWR condition, however, the frequency of short between-shift intervals was 

significantly associated with predicted number of hours in a moderately impaired state 

(r=0.39, p<0.000001) but not with predicted number of hours in a highly impaired state 

(r=−0.01, p=0.92).

Predicted performance was highly correlated with sleep duration (Figure 4). On average, 

total subjective sleep time (from daily logs) was significantly lower on the EDWR schedules 

compared with the RCWR schedules (6.7 ± 0.7 h vs. 7.0 ± 0.7 h; p=0.002, effect size 

= 0.20). Spearman correlations of total subjective sleep time with work hours spent in a 

moderately impaired state were significant for the EDWR (r=−0.85, p<0.001) and RCWR 

(r=−0.81, p<0.001). Spearman correlations of total subjective sleep time with work hours 

spent in a highly impaired state were also significant for both the EDWR (r=−0.63, p<0.001) 

and RCWR (r=−0.70, p<0.001).

Discussion

We used a mathematical model to compare traditional EDWR schedules with RCWR 

schedules (that were designed to ameliorate impacts of working hours on sleep and 

neurobehavioral performance) using predicted neurobehavioral performance during 169 

resident physicians’ sleep and work schedules. This is the first example of linking three key 

components for real-world performance prediction in a single study: (i) a dynamic model of 

the human circadian pacemaker and its response to light/dark and sleep/wake patterns; (ii) 

a model of effects of chronic (cumulative) sleep restriction on performance; and (iii) actual 

schedules of self-selected sleep/wake timing with associated realistic light/dark patterns. Our 

findings indicate that the RCWR intervention is partially effective in reducing the predicted 

neurobehavioral performance impairments generated by the traditional EDWR. Specifically, 

the RCWR intervention was found to be most beneficial during the circadian (biological) 

night and least beneficial in late morning.

A key strength of this analysis is the use of real sleep and work patterns, rather than 

idealized or planned schedules. Within both the EDWR and RCWR schedules, we observed 

considerable interindividual and intra-individual variability in both sleep and work patterns. 

This variability is representative of real-world differences in compliance, adherence, work/

social constraints, and physiology, as well as schedule implementation47. Using the model 

across these datasets, we were able to identify two concrete areas of future improvement 

for RCWR schedules. First, we found a specific window of vulnerability in performance 

during work hours from 08:00 to 11:00, which is not predicted to be present on EDWR 

schedules. Second, we identified that short between-shift intervals are predictive of a greater 
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number of hours working in a moderately impaired state specifically for RCWR schedules. 

This prediction suggests that carefully controlling the duration of between-shift breaks could 

enhance efficacy of the RCWR intervention.

Our work predicts chronic deterioration of performance on both RCWR and EDWR 

schedules. Compared to EDWR, the rate of deterioration is predicted to be lower by 57% 

on the RCWR. As experimental studies have demonstrated, the effects of chronic sleep 

restriction can accumulate over weeks16,38,52,53. Moreover, if chronic sleep restriction is 

alternated with recovery breaks that are of insufficient duration to achieve full recovery to 

baseline, the rate of cumulative decline in neurobehavioral performance may not be slowed 

by the recovery intervals19. Studies of neurobehavioral performance in resident physicians 

to date have all been of less than a month in duration12,54. Our findings suggest the need 

for longitudinal studies, across months or years, to assess the long-term impacts of resident 

physician schedules on sleep and neurobehavioral performance.

We note that the model used in this study predicts objective performance on the PVT, rather 

than subjective measures of alertness. Subjective alertness, which is used by individuals to 

decide if they need a countermeasure (e.g., nap or caffeine) and/or if they can safely perform 

(e.g., driving home) is not well correlated with objective performance when individuals are 

exposed to chronic sleep restriction19,38,53,55,56. Adding subjective alertness to the model 

could improve its use in education about the dangers of insufficient sleep, including its 

effects on objective performance.

There are possible limitations of the method presented here. First, all components of 

the model have been trained on healthy young adults with intermediate chronotypes 

(i.e., excluding individuals whose preferred sleep timing is extremely early or extremely 

late). Predictions may therefore not be representative for individuals of other ages; with 

sleep, circadian, or other disorders; and/or extreme chronotypes. In the future, the model 

could be used to investigate sensitivity of the predictions to physiological parameters that 

determine chronotype, as has been done previously for diurnal schedules44,48, since different 

individuals may respond differently to the same work or sleep schedule57,58. Second, this 

model does not yet incorporate the effects of caffeine or other pharmaceuticals on sleep 

and performance. Models of caffeine’s effects on sleep and neurobehavioral performance 

have been developed59–61 and should be incorporated in future. Models of the effects of 

prescription medications need to be developed. Third, the model predictions generated 

from these real work patterns have not been validated against data. The models, however, 

have previously been validated on data from other experimental studies of chronic sleep 

restriction and circadian misalignment of sleep/wake and light/dark patterns37. Validation on 

experimental data from RCWR and EDWR schedules is an important next step to confirm 

whether some of the differences observed between RCWR and EDWR, such as the worse 

performance predicted from 08:00 to 11:00 on the RCWR schedule, are observed during 

actual work shifts. Finally, the model predictions do not currently account for effects of 

sleep inertia on neurobehavioral performance62,63. Notably, many of the participants on 

EDWR schedules took naps during the extended duration shifts, followed by immediate 

return to work. The model simulates the restorative properties of napping, but not the sleep 

inertia, which may be impactful even for short naps25.
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In previous work with the chronic sleep restriction component of the model, the model 

was also used to generate accurate predictions of sleep/wake patterns37. Here, we chose 

instead to use the reported sleep/wake patterns for each schedule as input to the model. This 

selection was made for two reasons: (i) the model has only been validated for sleep/wake 

predictions on daytime work schedules, and sleep during rotating shiftwork will be more 

difficult to predict; and (ii) to ensure that performance predictions are not systematically 

inaccurate due to any potential inaccuracies in the model’s predictions of sleep/wake timing. 

In future work, the model’s sleep/wake predictions could be trained against this and other 

datasets. This would allow model-based prospective assessment of candidate schedules in 

the absence of any worker data to determine which schedules allow the most opportunity for 

sleep with the least amount of time spent in a moderately or highly impaired state.

Modeling is an essential component of effective occupational risk assessment, yet the use 

of models in medical settings remains very limited26,64. The modeling approach presented 

here could be employed in an active role in future medical residents or other schedule 

design and optimization (e.g., transportation [airline pilots, train conductors, ship captains, 

truck drivers], military/security, nuclear power plant monitoring) for individuals and teams. 

Although there are many factors – both fiscal and logistical – that constrain the design 

of resident physician schedules, our findings underscore the importance of considering the 

effects of sleep loss and adverse circadian phase, especially given the high cost of failure to 

both patient safety and physician health in the medical setting or operator and public safety 

in other settings.
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Public Health Relevance

This work highlights the utility of mathematical models for evaluating the predicted 

performance profile of work schedules in safety-sensitive occupations that are susceptible 

to chronic sleep restriction and circadian misalignment, including resident physicians; 

individuals working in transportation, military/security, and industry; and others.
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Figure 1: 
Double raster plots for examples of (A) the Extended Duration Work Roster (EDWR) and 

(B) the Rapidly Cycling Work Roster (RCWR). Time intervals corresponding to sleep are 

marked by black bars. Time intervals corresponding to work are marked by white, yellow, 

and red bars, which represent times of predicted low, moderate, and high performance 

impairment during work, respectively.
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Figure 2: 
Predicted hours per week during work hours spent under (A) moderate impairment 

(equivalent to 16–20 hours of continuous wakefulness); and (B) high impairment (equivalent 

to >20 hours of continuous wakefulness). Distributions for the Extended Duration Work 

Roster (EDWR) and the Rapidly Cycling Work Roster (RCWR) are shown as box-and-

whisker plots. Individual data points (169 schedules total; 95 EDWRs and 74 RCWRs) are 

plotted as circles, with x-axis position jittered to reduce overlap of points. Each individual 

point in each panel is one simulated schedule.
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Figure 3: 
Mean predicted attentional failures as measured by PVT lapses for Extended Duration Work 

Roster (EDWR) and Rapidly Cycling Work Roster (RCWR) schedule conditions, plotted by 

time of day averaged across all data sets (169 schedules total; 95 EDWRs and 74 RCWRs) 

in 1-hour clock time bins. Data are plotted for (A) all hours of wakefulness, and (B) working 

hours, and plotted at the midpoint of each clock hour. Error bars show mean ± SEM. 

Significance is shown for timepoint-wise comparisons: *p<0.002, **p<0.0001.
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Figure 4: 
Associations of average total subjective sleep time across the entire schedule for all 169 

schedules (95 EDWRs and 74 RCWRs) with predicted hours per week spent in (A) 

moderate impairment during work (equivalent to 16–20 hours of continuous wakefulness); 

and (B) high impairment during work (equivalent to >20 hours of continuous wakefulness). 

Each individual point in each panel is one simulated schedule.

Phillips et al. Page 20

Sleep Health. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Methods
	Mathematical model
	Schedules
	Simulations
	Analysis

	Results
	Discussion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:

